Convolutional Neural
Networks (CNN)
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Why convolutional networks?

> Neuroscientific inspiration

» Computational reasons

» Sparse computation (compared to full deep
networks)

» Shared parameters (only a small number of shared
parameters)

» Translation invariance



Motivation for convolution networks:

Gabor functions derived from neuroscience
experiments are simple convolutional filters [DL, ch. 9]
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Convolutional networks automatically learn filters
similar to Gabor functions [DL, ch. 9]
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1D convolutions are similar but slightly different
than signal processing / math convolutions
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Padding or stride parameters alter the
computation and output shape
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1D convolutions are similar but slightly different
than signal processing / math convolutions
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Switch to demo of 1D



2D convolutions are simple generalizations to

matrices
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Switch to demo of 2D



2D convolutions with channels are like simple 2D
convolutions but all arrays have a channel dimension
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“fn X f» convolution” (channel dimension is assumed)
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Multiple convolutions increase the output
channel dimension
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Reasoning about input and output shapes is
important for debugging and designing CNNs

» Convolution input parameters
> Channelln = Cy,
» ChannelOut = C,,;+ (equivalent to # filters)
» KernelSize = |K,, K,]
> Stride =[Sy, S4]
» Padding = |P,, P, ]
> Coyr = # filters
» Output spatial dimensions

(Hin+2P —Kq)
>Houtzl SOO > +1‘

+1
S1
» Output batch dimension should match input
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Common convolution configurations
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» Qutput has same height and width as input

»1 x1 convo
» 3 x 3 convo
»5 x5 convo

» Qutput has
» 2 X2 convo
»4 x4 convo
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Switch to demo of 2D with channels, activation
functions, and pooling




Standard Convolutional Layer Terminology
DL, ch. 9]

Complex layer terminology Simple layer terminology

Next layer Next layer

i

Convolutional Layer

Pooling stage Pooling layer

] ]

Detector stage:

Nonli N Detector layer: Nonlinearity
ontineartly e.g., rectified linear

e.g., rectified linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
Input to layer Input to layers
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Demo of CIFAR-10 CNN in Pytorch




Two important modern CNN
architecture concepts:
batch normalization and
residual networks




Batch normalization dynamically normalizes each
feature to have zero mean and unit variance

» Basic idea: Normalize input batch of each layer during the
forward pass

1. Input is minibatch of data Xt € R™*4 at iteration t
2. Compute mean and standard deviation for every feature

2 .
3. Normalize each feature (note different for every batch)

-t (xlt] — Hf

X:: =
L] t
9

4. Output Xt

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).
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Because BatchNorm removes linear effects,
extra linear parameters are also learned

> The form of this final update is:

X
ff] (UG, ) j+IBj

> Where ){J and ,811 are Iear]nable parameters
> While u; and g;” are computed from the minibatch

> But how do we compute u? and o about during
test time (i.e., no minibatchﬂ?

> Use running average of mean and variance

.u'mén — )nurw]it _Il (1 /D.ulgatch
O-Z’mm — Ao-zrun + (1 — /1)0' batch
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For CNNs, the channel dimension
is treated as a “feature”

» If the input minibatch tensor is X¢ €
RMXCXAXW “then the channel dimension c is
treated as a feature:

2
5 = Elxfl,of = [B[(xf - u)7].
viel{l, -, c}

> Where the mean is taken over both the batch
dimension m and the spatial dimensions h and w

» Called “Spatial Batch Normalization”

> Variants: Instance, Group or Layer
Normalization

https://pytorch.org/docs/stable/nn.html#normalization-layers
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BatchNorm can stabilize and accelerate training
of deep models

» To use In practice:

> Only normalize batches during training
(model.train ())

> Turn off after training (model .eval ())
» Uses running average of mean and variance
» Surprisingly effective at stabilizing training,
reducing training time, and producing better
models

> Not fully understood why it works

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).
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Demo of batch normalization in PyTorch
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Residual networks add the input
to the output of the CNN

» Most deep model layers have the form:

y = f(x)
> Where f could be any function including a
convolutional layer like f(x) = a(Conv (a(Conv(x))))

» Residual layers add back in the input
y=fx)+x

> Notice that f(x) models the difference between x
and y (hence the name residual)

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 770-778).

David I. Inouye



A residual network enables deeper
networks because gradient
information can flow between layers

identity

Figure 2. Residual learning: a building block.

34-layer residual

» A data flow diagram shows the
“shortcut” connections

» Consider composing 2 residual layers:
»zW = £ (x) + x
» 2@ = £,(z0) + 7O
> Or, equivalently
2 = £,(f1(0) +x) + f1(x) + x

> |If the residuals = 0, then this is merely
the identity function

Images from: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 770-778).
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Detail: If the dimensionality is not the same, then use
either fully connected layer or convolution layer to match

> In the 1D case, suppose f(x): R% - R™, then
we need to multiply x by linear operator to
match the dimension

= f(x) + Wx, where W € R™*¢

> Similarly, for images, if f(x): REXAXW _

, we can apply a convolution layer to
match the dlmen5|ons

y = f(x) + conv(x),
where conv(+): REXhxw _; Re'xh xw’

]RC "sxh!xw/’




Demo of CNN with very simple residual network




U-Nets have an autoencoder structure with skip
connections for semantic segmentation task

> Concatenation +
convolution rather
than residual skip
connections

> Any #pretrained)
classification

backbone can be
used for encoder

» State-of-the-art
semantic
segmentation are
based on this idea

input
ima%e >l olele output
il || segmentation
e o 4 & map
o ol & A A =
rd Oy o0

=»conv 3x3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» CcOnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing

and computer-assisted intervention (pp. 234-241). Springer, Cham.
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