Diffusion Models

David I. Inouye

Elmore Family School of Electrical and Computer Engineering

Diffusion models have become state-of-the-art for generative modeling

• See demo: https://huggingface.co/spaces/stabilityai/stable-diffusion

Abstract painting of an artificial intelligent agent

the text "Purdue" on an indiana university jersey

David I. Inouye, Purdue University

Overview

- Model
 - Diffusion models as hierarchical VAEs with fixed encoders
- Training
 - Perspective 1: Reweighted joint ELBO
 - Perspective 2: Multiple VAE ELBOs with shared parameters
 - Perspective 3: Multiple denoising AEs with shared parameters
- Sampling
 - VAE-based Markov sampling (DDPM)
 - Implicit (deterministic) sampling (DDIM)

Model: Diffusion models define forward and reverse diffusion processes

- Diffusion models can be viewed as hierarchical VAEs
 - Forward process = hierarchical **encoder**
 - Reverse process = hierarchical **decoder**
- Several critical differences from VAE
 - Involves multiple latent representations rather than one
 - Hierarchical encoder is **fixed** (i.e., no trainable parameters)
 - Parameters θ are shared between decoder steps

Image from: https://arxiv.org/pdf/2011.13456.pdf

David I. Inouye, Purdue University

Model: The forward process is defined by a **fixed** Markov transition distribution $q(x_t|x_{t-1})$

• The forward process starts at the data distribution, i.e.,

$$q(x_0) = p_{data}(x)$$

• Define forward process via Markov transition $q(x_t|x_{t-1}) \stackrel{\text{def}}{=} \mathcal{N}(x_t; \mu = w_{\mu}(t)x_{t-1}, \Sigma = w_{\sigma}(t)I)$

- where $w_{\mu}(t)$ and $w_{\sigma}(t)$ can be functions that vary across time t
- For simplicity, we will use $w_{\mu}(t) = 1$ and $w_{\sigma}(t) = 1$ so that above simplifies $q(x_t|x_{t-1}) \stackrel{\text{def}}{=} \mathcal{N}(x_t; \mu = x_{t-1}, \Sigma = I)$
- Notice there are **no trainable parameters**

Model: The forward process can be **collapsed** into a single step, i.e., $q(x_t|x_0)$ is known in **closed-form**

Distribution-based derivation

- The joint distribution is Gaussian because each of the components are conditionally Gaussian
 - $q(x_{1:t}|x_0)$
 - = $\prod_{t'=1}^{t} q(x_{t'}|x_{t'-1})$
 - = $q(x_1|x_0)q(x_2|x_1)q(x_3|x_2) \dots$
 - = $\mathcal{N}(x_1|x_0, I)\mathcal{N}(x_2|x_1, I)\mathcal{N}(x_3|x_2, I) \dots$
- The marginal of a Gaussian is also Gaussian, i.e.,

$$q(x_t|x_0) = \mathcal{N}(x_t; \mu = x_0, \Sigma = t \cdot I)$$

Random variable derivation

• By the definition of $q(x_t|x_{t-1})$

$$\begin{aligned} x_t &= x_{t-1} + \epsilon_{t-1} \text{ where } \epsilon_{t-1} \sim \mathcal{N}(0, I) \\ & \cdot x_t &= x_{t-1} + \epsilon_{t-1} \\ & \cdot &= x_{t-2} + \epsilon_{t-2} + \epsilon_{t-1} \\ & \cdot &= x_{t-3} + \epsilon_{t-3} + \epsilon_{t-2} + \epsilon_{t-1} \\ & \cdot &= \cdots &= x_0 + \sum_{t'=0}^{t-1} \epsilon_{t'} \end{aligned}$$

• Fact: Adding Gaussian RVs is another Gaussian RV distributed so that

•
$$x_t = x_0 + \sum_{t'=0}^{t-1} \epsilon_{t'} = x_0 + \tilde{\epsilon}_t$$

- Where $\tilde{\epsilon}_t \sim \mathcal{N}(0, t \cdot I)$
- Thus, $x_t \sim \mathcal{N}(x_0, t \cdot I)$

Model: The forward process can be **collapsed** into a single step, i.e., $q(x_t|x_0)$ is known in **closed-form**

• What does this mean intuitively? $q(x_t|x_0) = \mathcal{N}(x_t; \mu = x_0, \Sigma = T \cdot I) \Leftrightarrow x_t \sim \mathcal{N}(x_0, T \cdot I)$

David I. Inouye, Purdue University

Model: The reverse transition conditioned on x_0 is known in closed form $(q(x_{t-1}|x_t, x_0))$

• The ideal reverse transition $p^*(x_{t-1}|x_t)$ would be the posterior of q

$$p^*(x_{t-1}|x_t) = q(x_{t-1}|x_t) = \frac{q(x_t|x_{t-1})q(x_{t-1})}{q(x_t)}$$

- However, this is intractable \otimes
- However, if **conditioned on** x_0 , the posterior is tractable

•
$$q(x_{t-1}|x_t, x_0)$$

• $= \frac{q(x_t|x_{t-1}, x_0)q(x_{t-1}|x_0)}{q(x_t|x_0)}$
• $= \frac{q(x_t|x_{t-1})q(x_{t-1}|x_0)}{q(x_t|x_0)}$ (Markov property of q , i.e., x_t only dependent on x_{t-1})
• $= \frac{\mathcal{N}(x_t; \mu = x_{t-1}, \Sigma = I)\mathcal{N}(x_{t-1}; \mu = x_0, \Sigma = (t-1) \cdot I)}{\mathcal{N}(x_t; \mu = x_0, \Sigma = t \cdot I)}$
• $= \mathcal{N}\left(x_{t-1}; \mu = \left(1 - \frac{1}{t}\right)x_t + \frac{1}{t}x_0, \Sigma = \left(1 - \frac{1}{t}\right)I\right)$

Derivation uses the fact each can be expressed as the exponential of a quadratic function, i.e., a Gaussian. These quadratic functions can be combined to form a single quadratic in terms of x_{t-1} and then used to derive the mean and variance in terms of t, x_t and x_0 .

8

Model: The reverse transition conditioned on x_0 is known in closed form $(q(x_{t-1}|x_t, x_0))$

• What does this mean intuitively? $q(x_{t-1}|x_t, x_0) = \mathcal{N}\left(x_{t-1}; \mu = \left(1 - \frac{1}{t}\right)x_t + \frac{1}{t}x_0, \Sigma = \left(1 - \frac{1}{t}\right)I\right)$ $\sum_{\mu(x_t, x_0)} \sum_{\mu(x_t, x_$ Suppose t = 4Notice that we defined the forward direction $q(x_t|x_{t-1})$ $q(x_{t-1}|x_t, x_0)$ but derived the conditional inverse $q(x_{t-1}|x_t, x_0)$ x_1 x_{t-1} x_{T-1} χ_T

 $p_{\theta}(x_{t-1}|x_t)$

Model: The reverse process approximates the posterior transition of q

- Prior distribution $p(x_T)$
 - Theory: As $T \to \infty$, $q(x_T) \to \mathcal{N}(x_T; \mu = \mu_{data}, \Sigma = \Sigma_{data} + T \cdot I)$.
 - Therefore, we choose a Gaussian prior distribution (note that this is with our simplified $w_{\mu}(t)$ and $w_{\sigma}(t)$ and is only approximate if T is finite) $p(x_T) \stackrel{\text{def}}{=} \mathcal{N}(x_T; \mu = \mu_{data}, \Sigma = \Sigma_{data} + T \cdot I) \ (\approx q(x_T))$
- Reverse transition distribution $p_{\theta}(x_{t-1}|x_t)$
 - Theory: As the number of timesteps approaches infinity, i.e., $T \to \infty$, then $q(x_{t-1}|x_t)$ is known to be Gaussian.
 - Therefore, we choose the approximate posterior to be Gaussian (note with finite timesteps the posterior is not Gaussian)

 $p_{\theta}(x_{t-1}|x_t) \stackrel{\text{def}}{=} \mathcal{N}(x_{t-1}; \mu = \mu_{\theta}(x_t), I) \quad \left(\approx q(x_{t-1}|x_t)\right)$

Training(1): Reweighted ELBO simplifies to predicting noise from noisy input at each time t

- The main idea is to simply optimize the negative ELBO of this VAE $\min_{\theta} \mathbb{E}_{q(x_0)}[-\text{ELBO}(x_0; p_{\theta}, q)]$
- This objective can be simplified to reconstruction error across time

$$\min_{\theta} \mathbb{E}_{t \in \{1,\dots,T\}, x_0, \tilde{\epsilon}_t} \left[\frac{1}{2t^2} \| x_0 - \mu_{\theta} (x_0 + \tilde{\epsilon}_t, t) \|_2^2 \right]$$

Т

- The $\frac{1}{2t^2}$ term is from the ELBO derivation, where μ_{θ} is like the decoder and tries to predict the clean x_0
- The model usually predicts the <u>noise</u> instead of the clean image
 - First we rewrite the decoder as the noisy input minus predicted noise: $\mu_{\theta}(x_t, t) = x_t \epsilon_{\theta}(x_t, t)$
 - Then, we can rewrite the objective: $||x_0 \mu_{\theta}(x_t, t)||^2$
 - = $||x_0 (x_t \epsilon_\theta(x_t, t))||^2 = ||x_0 ((x_0 + \tilde{\epsilon}_t) \epsilon_\theta(x_0 + \tilde{\epsilon}_t, t))||^2 = ||\tilde{\epsilon}_t \epsilon_\theta(x_0 + \tilde{\epsilon}_t, t)||^2$
- Thus, this objective can be simplified to (full derivation in last slides)

 $\min_{\theta} \mathbb{E}_{t \in \{1, \dots, T\}, x_0, \tilde{\epsilon}_t} [\|\tilde{\epsilon}_t - \epsilon_{\theta} (x_0 + \tilde{\epsilon}_t, t)\|_2^2]$

• Where a scaling of $\frac{1}{2t^2}$ from the ELBO is dropped for each term

Training(2): Multiple VAEs with fixed encoder and shared parameters

$$\min_{\theta} \mathbb{E}_{t \in \{1, \dots, T\}, x_0, \tilde{\epsilon}_t} [\|\tilde{\epsilon}_t - \epsilon_{\theta} (x_0 + \tilde{\epsilon}_t, t)\|_2^2]$$

- Let $z \equiv x_t$ and $x \equiv x_0$, now let's define VAE for each t
- Encoders based on $t: q_t(z|x) = \mathcal{N}(x, tI)$
- Decoders based on $t: p_{\theta_t}(x|z) = \mathcal{N}(z t\epsilon_{\theta_t}(z), tI)$ (prior p(z) is irrelevant for training)
- For any *t*, the VAE objective would be:

•
$$\min_{\theta_t} \mathbb{E}_{x,\epsilon} \left[\frac{1}{t^2} \left\| x - \left((x + t\epsilon) - t\epsilon_{\theta_t} (x + t\epsilon) \right) \right\|_2^2 \right] \equiv \min_{\theta_t} \mathbb{E}_{x,\epsilon} \left[\left\| \epsilon - \epsilon_{\theta_t} (x + t\epsilon) \right\|_2^2 \right]$$

- These could all be run in parallel
 - $\frac{1}{n}\sum_{t}\min_{\theta_{t}}\mathbb{E}_{x,\epsilon}\left[\left\|\epsilon-\epsilon_{\theta_{t}}(x+t\epsilon)\right\|_{2}^{2}\right] = \min_{\theta_{1}\ldots\theta_{T}}\mathbb{E}_{t\in\{1,\ldots,T\},x,\epsilon}\left[\left\|\epsilon-\epsilon_{\theta_{t}}(x+t\epsilon)\right\|_{2}^{2}\right]$
- If parameters θ are shared, i.e., $\epsilon_{\theta_t}(z) \equiv \epsilon_{\theta}(z, t)$, the objectives are equivalent!

Training(3): Multiple denoising AEs

 $\min_{\theta} \mathbb{E}_{t \in \{1, \dots, T\}, x_0, \tilde{\epsilon}_t} [\|\tilde{\epsilon}_t - \epsilon_{\theta}(x_0 + \tilde{\epsilon}_t, t)\|_2^2]$

- Identity encoders $f_t(x) = x$
- Decoders: $g_t(z) = z t\epsilon_{\theta_t}(z)$
- Noise added to input: $n_t(x) = x + t\epsilon$
- For any *t*, the denoising AE objective with MSE would be:
 - $\min_{\theta_t} \mathbb{E}_{x,\epsilon} \left[\left\| x g_t (f_t(x + t\epsilon)) \right\|_2^2 \right]$
 - $\equiv \min_{\theta_t} \mathbb{E}_{x,\epsilon} \left[\|x (x + t\epsilon t\epsilon_{\theta}(x + t\epsilon)\|_2^2 \right]$
 - $\equiv \min_{\theta_t} \mathbb{E}_{x,\epsilon} \left[t^2 \| \epsilon \epsilon_{\theta} (x + t\epsilon) \|_2^2 \right]$
- Again, global objective equivalent if
 - Parameters θ are shared, i.e., $\epsilon_{\theta_t}(z) \equiv \epsilon_{\theta}(z,t)$
 - All objectives combined where the *t*-th objective has a weight of $\frac{1}{t^2}$

Sampling(1): DDPM sampling simply samples the generative model sequentially

• Remember:
$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}\left(x_{t-1}|\mu = x_t - \frac{1}{t}\epsilon_{\theta}(x_t, t), I\right)$$

- Sample from prior distribution $x_T \sim p(x_T)$
- For t = T, ..., 1 do:
 - $z \sim \mathcal{N}(0, I)$

•
$$x_{t-1} = x_t - \frac{1}{t}\epsilon_{\theta}(x_t, t) + z$$

• For the last step, we may also quantize using rounding to get integer value for pixels

Sampling(2): DDIM redefines $p_{\theta}(x_{t-1}|x_t)$ in terms of $q_{\sigma}(x_{t-1}|x_t, x_0)$ where x_0 is approximated

- Note that we can approximate x_0 using $\epsilon_{\theta}(x_t, t)$
 - $x_0 \approx \hat{x}_0 \stackrel{\text{\tiny def}}{=} f_\theta(x_t, t) = x_t t\epsilon_\theta(x_t, t)$
- The generative model p_{θ} can now be defined using q_{σ}

•
$$p_{\theta}(x_{t-1}|x_t) \stackrel{\text{\tiny def}}{=} \begin{cases} \mathcal{N}(f(x_1, 1), \sigma_1^2 I), & \text{if } t = 1\\ q_{\sigma}(x_{t-1}|x_t, f_{\theta}(x_t, t)), & \text{otherwise} \end{cases}$$

- A special case of DDIM allows for deterministic sampling
 - Stochastic training but deterministic sampling (i.e., non-stochastic)
- DDIM also allows different timesteps in sampling compared to training—thus enabling faster sampling with the same model $\epsilon_{\theta}(x_t, t)$
- We can use a pretrained version of ϵ_{θ} and just sample differently

Resources

- Excellent diffusion models blog post
 - <u>https://lilianweng.github.io/posts/2021-07-11-diffusion-models/</u>
- Excellent score-based generative models blog post
 - <u>https://yang-song.net/blog/2021/score/</u> (in particular, notice section <u>Connection to diffusion models and others</u>)
- Score-based comprehensive literature
 - <u>https://scorebasedgenerativemodeling.github.io/</u>

A few important diffusion model works

- *Diffusion Models:* Jascha Sohl-Dickstein et al. "Deep Unsupervised Learning using Nonequilibrium Thermodynamics." ICML 2015.
 - Sohl-Dickstein et al. [2015] introduced the learning of diffusion models as forward noising and reverse denoising process
- *Denoising Diffusion Probabilistic Models (DDPM):* Jonathan Ho et al. "Denoising diffusion probabilistic models." NeurIPS 2020.
 - Ho et al. [2020] made several key design decisions and connected to Noise-Conditioned Score Networks (NSCN) [Yang & Ermon, 2019]
- DDPM++: Alexander Nichol & Dhariwal. "Improved Denoising Diffusion Probabilistic Models." ICML 2021.
 - Makes several engineering improvements over DDPM including faster sampling and better likelihood
- *Denoising Diffusion Implicit Model (DDIM):* Jiaming Song et al. "Denoising diffusion implicit models." ICLR 2021.
 - Song et al. [2020] proposed a non-Markovian sampling procedure that includes a deterministic variant (note: the training is the same as DDPM)

Related score-based modeling key papers

- Noise-Conditioned Score Networks (NCSN): Yang Song et al. "Generative Modeling by Estimating Gradients of the Data Distribution." NeurIPS 2019.
 - Trains many score functions (i.e., $\nabla_x \log p_t(x)$) at multiple noise levels t and uses Langevin sampling for generation
- Yang Song et al. "Score-Based Generative Modeling through Stochastic Differential Equations." ICLR 2021.
 - Unifies diffusion and score-based methods under common framework
 - Generalizes DDPM and NCSN to continuous time
 - Can convert stochastic diffusion model to continuous normalizing flow
- Tero Karras et al. "Elucidating the Design Space of Diffusion-Based Generative Models." NeurIPS 2022.
 - Unifies the key practical/engineering design decisions for diffusion models

Key Derivations (time permitting)

Training(1): Minimizing joint negative ELBO across all timesteps

- Remember the negative evidence lower bound (ELBO) from VAEs $-\text{ELBO}(x; p_g, q_f) = \mathbb{E}_{q_f} \left[-\log \frac{p_g(x, z)}{q_f(z|x)} \right] = \mathbb{E}_{q_f} \left[-\log p_g(x|z) \right] + \text{KL} \left(q_f(z|x), p_g(z) \right)$ Computable, see reconstruction error slides Computable in closed-form for Gaussian distributions
- Now let $x \equiv x_0$ and $z \equiv x_{1:T}$ in the above equation
- -ELBO $(x_0; p_{\theta}, q) = \mathbb{E}_{q(x_0;T)} \left[-\log \frac{p_{\theta}(x_0, x_{1:T})}{q(x_{1:T} | x_0)} \right]$
- = $\mathbb{E}_{q}\left[-\log p_{\theta}(x_{0}|x_{1:T})\right] + KL(q(x_{1:T}|x_{0}), p_{\theta}(x_{1:T}))$
- = $\mathbb{E}_{q(x_1|x_0)} \left[-\log p_{\theta}(x_0|x_1) \right] + KL(q(x_{1:T}|x_0), p_{\theta}(x_{1:T}))$ (Markov property)

Lemma: Chain rule of KL

- Chain rule of KL
 - $KL(q(x), p(x)) = \sum_{i=1}^{d} \mathbb{E}_{q(x_{< i})} [KL(q(x_i|x_{< i}), p(x_i|x_{< i}))]$
- Inverted chain rule of KL (equivalent)
 - $KL(q(x), p(x)) = \sum_{i=1}^{d} \mathbb{E}_{q(x_{>i})} [KL(q(x_i|x_{>i}), p(x_i|x_{>i}))]$
- Derivation for two dimensions

•
$$KL(q(x_1, x_2), p(x_1, x_2)) = \mathbb{E}_{q(x_1, x_2)} \left[\log \frac{q(x_1, x_2)}{p(x_1, x_2)} \right]$$

• $= \mathbb{E}_{q(x_1)} \left[\mathbb{E}_{q(x_2|x_1)} \left[\log \frac{q(x_1)q(x_2|x_1)}{p(x_1)p(x_2|x_1)} \right] \right]$
• $= \mathbb{E}_{q(x_1)} \left[\log \frac{q(x_1)}{p(x_1)} + \mathbb{E}_{q(x_2|x_1)} \left[\log \frac{q(x_2|x_1)}{p(x_2|x_1)} \right] \right]$
• $= KL(q(x_1), p(x_1)) + \mathbb{E}_{q(x_1)} [KL(q(x_2|x_1), p(x_2|x_1))]$

Diffusion ELBO: Simplification using KL chain rule and Markov property

- $KL(q(x_{1:T}|x_0), p_{\theta}(x_{1:T}))$ For notational simplicity, let x_{T+1} be a dummy random variable that is independent of all other random variables (the distribution does not matter).
- = $\sum_{t=1}^{T} \mathbb{E}_{q(x_{>t}|x_{0})} \left[KL(q(x_{t}|x_{>t},x_{0}), p_{\theta}(x_{t}|x_{>t})) \right]$ (KL chain rule)
- = $\sum_{t=2}^{T+1} \mathbb{E}_{q(x_{\geq t}|x_0)} \left[KL(q(x_{t-1}|x_{\geq t}, x_0), p_{\theta}(x_{t-1}|x_{\geq t})) \right]$
- = $\sum_{t=2}^{T+1} \mathbb{E}_{q(x_{\geq t}|x_0)} \left[KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) \right]$ (Markov properties)
- = $\sum_{t=2}^{T+1} \mathbb{E}_{q(x_t|x_0)} \left[KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) \right]$
- = $\sum_{t=2}^{T} \mathbb{E}_{q(x_t|x_0)} \left[KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) \right] + KL(q(x_T|x_0), p(x_T))$

Proof of Markov property for q and an alternative derivation that is usually used are provided at the end.

22

Diffusion ELBO: A reconstruction term and many KL terms

- $-\text{ELBO}(x_0; p_{\theta}, q)$
- = $\mathbb{E}_{q}[-\log p_{\theta}(x_{0}|x_{1:T})] + KL(q(x_{1:T}|x_{0}), p_{\theta}(x_{1:T}))$ ($x \equiv x_{0} \text{ and } z \equiv x_{1:T}$)
- $\bullet = \mathbb{E}_{q(x_1|x_0)}\left[-\log p_{\theta}(x_0|x_1)\right] + KL\left(q(x_{1:T}|x_0), p_{\theta}(x_{1:T})\right)$ (Markov property)
- = $\mathbb{E}_{q(x_1|x_0)} \left[-\log p_{\theta}(x_0|x_1) \right]$ (*L*₀ Initial reconstruction term, e.g., dequantization) • + $\sum_{t=2}^{T} \mathbb{E}_{q(x_t|x_0)} \left[KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) \right]$ (*L*₁ to *L*_{*T*-1} KL terms)
 - + $KL(q(x_T|x_0), p(x_T))$ (L_T "prior" term, constant w.r.t. θ)

The KL terms simplify to MSE between true posterior mean and predicted mean

• KL between two Gaussians

•
$$KL\left(\mathcal{N}_{1}(\mu_{0},\sigma_{0}^{2}I),\mathcal{N}_{2}(\mu_{1},\sigma_{1}^{2}I)\right) = \frac{1}{2\sigma_{1}^{2}}\|\mu_{1}-\mu_{0}\|_{2}^{2} + \frac{1}{2}\left(\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}-d+\log\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)$$

• $KL\left(q(x_{t-1}|x_{t},x_{0}),p_{\theta}(x_{t-1}|x_{t})\right)$
• $= KL\left(\mathcal{N}\left(\mu_{q}=\left(1-\frac{1}{t}\right)x_{t}+\frac{1}{t}x_{0},\Sigma=\left(1-\frac{1}{t}\right)I\right),\mathcal{N}(\mu_{\theta}(x_{t},t),I)\right)$
• $= \frac{1}{2}\left\|\mu_{q}-\mu_{\theta}(x_{t},t)\right\|_{2}^{2}+C$

The KL term can equivalently be written as predicting the noise

• We can *equivalently* rewrite μ_q in terms of x_t and the noise $\tilde{\epsilon}_t \sim \mathcal{N}(x_0, tI)$

•
$$\mu_q = \left(1 - \frac{1}{t}\right) x_t + \frac{1}{t} x_0 = \left(1 - \frac{1}{t}\right) x_t + \frac{1}{t} (x_t - \tilde{\epsilon}_t) = x_t - \frac{1}{t} \tilde{\epsilon}_t$$

- We can also re-parameterize $\mu_{\theta}(x_t, t)$
 - $\mu_{\theta}(x_t, t) = x_t \frac{1}{t}\epsilon_{\theta}(x_t, t)$
- Now this simplifies to predicting Gaussian noise

•
$$KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) = \frac{1}{2\sigma_1^2} \|\mu_q - \mu_{\theta}(x_t, t)\|_2^2 + C$$

• $= \frac{1}{2} \|x_t - \frac{1}{t}\tilde{\epsilon}_t - (x_t - \frac{1}{t}\epsilon_{\theta}(x_t, t))\|_2^2 + C$
• $= \frac{1}{2} \|-\frac{1}{t}(\tilde{\epsilon}_t - \epsilon_{\theta}(x_t, t))\|_2^2 + C$
• $= \frac{1}{2t^2} \|\tilde{\epsilon}_t - \epsilon_{\theta}(x_t, t)\|_2^2 + C$ $(\equiv \frac{1}{2} \|\mu_q - \mu_{\theta}(x_t, t)\|_2^2 + C)$

Training(1): Reweighted ELBO simplifies to predicting noise from noisy input at each time t

- $\min_{\theta} \mathbb{E}_{q(x_0)}[-\text{ELBO}(x_0; p_{\theta}, q)]$
- $\equiv \min_{\theta} \mathbb{E}_{q(x_0, x_1)}[-\log p_{\theta}(x_0|x_1)]$ (L₀ in practice is dequantization term)
 - + $\sum_{t=2}^{T} \mathbb{E}_{q(x_0, x_t)} \left[KL(q(x_{t-1}|x_t, x_0), p_{\theta}(x_{t-1}|x_t)) \right]$ (*L*₁ to *L*_{*T*-1} KL terms)
 - + $\mathbb{E}_{q(x_0)}[KL(q(x_T|x_0), p(x_T))]$ (*L_T* "prior" term, constant w.r.t. θ)
- $\equiv \min_{\theta} \mathbb{E}_{q(x_1|x_0)} \left[-\log p_{\theta}(x_0|x_1) \right] + \sum_{t=2}^{T} \mathbb{E}_{t,x_0,\widetilde{\epsilon}_t} \left[\frac{1}{2t^2} \left\| \widetilde{\epsilon}_t \epsilon_{\theta} \left(x_0 + \widetilde{\epsilon}_t, t \right) \right\|_2^2 \right]$
- In practice, this objective is simplified to $\min_{\theta} \mathbb{E}_{t \in \{1, \dots, T\}, x_0, \tilde{\epsilon}_t} [\|\tilde{\epsilon}_t - \epsilon_{\theta}(x_0 + \tilde{\epsilon}_t, t)\|_2^2]$
 - By combining an approximation of L_0 with L_1 etc.
 - And dropping scaling of $\frac{1}{2t^2}$

Sampling(2): DDIM redefines the forward process in terms of $q(x_{t-1}|x_t, x_0)$ instead of $q(x_t|x_{t-1})$

- DDIM notices that the training objective only depends on $q(x_t|x_0)$ rather than the joint $q(x_{1:T}|x_0)$
 - Thus, there exist many joint distributions $q(x_{1:T}|x_0)$ that have the same marginals $q(x_t|x_0)$ as DDPM
- Instead of defining $q(x_t|x_{t-1})$, DDIM defines
 - $q_{\sigma}(x_{1:T}|x_0) \stackrel{\text{def}}{=} q_{\sigma}(x_T|x_0) \prod_{t=2}^{T} q_{\sigma}(x_{t-1}|x_t, x_0)$
 - $q_{\sigma}(x_T|x_0) \stackrel{\text{\tiny def}}{=} \mathcal{N}(x_0, T \cdot I)$
 - $q_{\sigma}(x_{t-1}|x_t, x_0) \stackrel{\text{def}}{=} \mathcal{N}(x_{t-1}; \mu = h(x_t, x_0, \sigma_t), \Sigma = \sigma_t I)$ (Not sure the form for our simple example.)
- DDIM derives that $q_{\sigma}(x_t|x_0) \equiv q(x_t|x_0)$, i.e., it matches the marginals of DDPM, for any $\sigma = [\sigma_1, \sigma_2, \cdots, \sigma_T]^T$
- Thus, the same training objective can be used!

Extra derivations

Lemma: Markov property for $q(x_{t-1}|x_{\geq t}, x_0)$

• $q(x_{t-1}|x_{>t}, x_0)$ • = $\frac{q(x_{\geq t}|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_{t-1}|x_0)}$ $q(x_{>t}|x_0)$ • = $\frac{q(x_{\geq t}|x_{t-1})q(x_{t-1}|x_0)}{q(x_{>t}|x_0)}$ • = $\frac{q(x_{t-1}|x_0) \prod_{t'=t}^{T} q(x_{t'}|x_{t'-1})}{q(x_t|x_0) \prod_{t'=t+1}^{T} q(x_{t'}|x_{t'-1})}$ • = $\frac{q(x_{t-1}|x_0)q(x_t|x_{t-1})\prod_{t'=t+1}^{T}q(x_{t'}|x_{t'-1})}{q(x_t|x_0)\prod_{t'=t+1}^{T}q(x_{t'}|x_{t'-1})}$ • = $\frac{q(x_{t-1}|x_0)q(x_t|x_{t-1},x_0)}{q(x_t|x_0)}$ • = $q(x_{t-1}|x_t, x_0)$

Alternative simplification of KL term from ELBO

$$\begin{split} & \cdot \quad KL\big(q(x_{1:T}|x_0), p_{\theta}(x_{1:T})\big) = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log \frac{q(x_{1:T}|x_0)}{p_{\theta}(x_{1:T})}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log \frac{q(x_1|x_0) \prod_{t=2}^T q(x_t|x_{t-1}, x_0)}{p(x_T) \prod_{t=2}^T p_{\theta}(x_{t-1}|x_t)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_t|x_{t-1}, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_1|x_0)}{p(x_T)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} \cdot \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p(x_T)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \sum_{t=2}^T \log \frac{q(x_t|x_0)}{q(x_{t-1}|x_0)} + \log \frac{q(x_1|x_0)}{p(x_T)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{q(x_1|x_0)} + \log \frac{q(x_1|x_0)}{p(x_T)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{1:T}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{p(x_T)}\right] \\ & \cdot \quad = \mathbb{E}_{q(x_{t}|x_0)} \left[\sum_{t=2}^T \log \frac{q(x_{t-1}|x_t, x_0)}{p_{\theta}(x_{t-1}|x_t)} + \log \frac{q(x_T|x_0)}{p(x_T)}\right] \\ \end{array} \right]$$

• $\sum_{t=2}^{T} \log \frac{q(x_t | x_0)}{q(x_{t-1} | x_0)}$ • $= -\log q(x_1 | x_0) + \log q(x_2 | x_0) - \log q(x_2 | x_0) + \log q(x_3 | x_0) \cdots + \log q(x_T | x_0)$ • $= -\log q(x_1 | x_0) + \log q(x_T | x_0)$