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Diffusion models have become state-of-the-art 
for generative modeling

• See demo: https://huggingface.co/spaces/stabilityai/stable-diffusion

David I. Inouye, Purdue University
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Overview

• Model

• Diffusion models as hierarchical VAEs with fixed encoders

• Training

• Perspective 1: Reweighted joint ELBO

• Perspective 2: Multiple VAE ELBOs with shared parameters

• Perspective 3: Multiple denoising AEs with shared parameters

• Sampling

• VAE-based Markov sampling (DDPM)

• Implicit (deterministic) sampling (DDIM)

David I. Inouye, Purdue University
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Model: Diffusion models define 
forward and reverse diffusion processes

• Diffusion models can be viewed as hierarchical VAEs
• Forward process = hierarchical encoder

• Reverse process = hierarchical decoder

• Several critical differences from VAE
• Involves multiple latent representations rather than one

• Hierarchical encoder is fixed (i.e., no trainable parameters)

• Parameters 𝜃 are shared between decoder steps

David I. Inouye, Purdue University
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Model: The forward process is defined by a fixed 
Markov transition distribution 𝑞 𝑥𝑡 𝑥𝑡−1

• The forward process starts at the data distribution, i.e., 
𝑞 𝑥0 = 𝑝𝑑𝑎𝑡𝑎 𝑥

• Define forward process via Markov transition

𝑞 𝑥𝑡 𝑥𝑡−1 ≝ 𝒩 𝑥𝑡; 𝜇 = 𝑤𝜇 𝑡 𝑥𝑡−1, Σ = 𝑤𝜎 𝑡 𝐼
• where 𝑤𝜇 𝑡  and 𝑤𝜎 𝑡  can be functions that vary across time 𝑡

• For simplicity, we will use 𝑤𝜇 𝑡 = 1 and 𝑤𝜎 𝑡 = 1 so that above simplifies
𝑞 𝑥𝑡 𝑥𝑡−1 ≝ 𝒩 𝑥𝑡; 𝜇 = 𝑥𝑡−1, Σ = 𝐼

• Notice there are no trainable parameters

David I. Inouye, Purdue University
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Model: The forward process can be collapsed into 
a single step, i.e., 𝑞 𝑥𝑡 𝑥0  is known in closed-form

Distribution-based derivation
• The joint distribution is Gaussian because 

each of  the components are conditionally 
Gaussian

• 𝑞 𝑥1:𝑡 𝑥0

• = ς𝑡′=1
𝑡 𝑞 𝑥𝑡′ 𝑥𝑡′−1

• = 𝑞 𝑥1 𝑥0 𝑞 𝑥2 𝑥1 𝑞 𝑥3 𝑥2 …

• = 𝒩 𝑥1 𝑥0, 𝐼 𝒩 𝑥2 𝑥1, 𝐼 𝒩 𝑥3 𝑥2, 𝐼 …

• The marginal of a Gaussian is also 
Gaussian, i.e.,

𝑞 𝑥𝑡 𝑥0 = 𝒩 𝑥𝑡; 𝜇 = 𝑥0, Σ = 𝑡 ⋅ 𝐼

Random variable derivation
• By the definition of  𝑞 𝑥𝑡 𝑥𝑡−1

𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡−1 where 𝜖𝑡−1 ∼ 𝒩 0, 𝐼
• 𝑥𝑡 = 𝑥𝑡−1 + 𝜖𝑡−1

• = 𝑥𝑡−2 + 𝜖𝑡−2 + 𝜖𝑡−1

• = 𝑥𝑡−3 + 𝜖𝑡−3 + 𝜖𝑡−2 + 𝜖𝑡−1

• = ⋯ = 𝑥0 + σ𝑡′=0
𝑡−1 𝜖𝑡′

• Fact: Adding Gaussian RVs is another 
Gaussian RV distributed so that

• 𝑥𝑡 = 𝑥0 + σ𝑡′=0
𝑡−1 𝜖𝑡′ = 𝑥0 + ǁ𝜖𝑡

• Where ǁ𝜖𝑡 ∼ 𝒩 0, 𝑡 ⋅ 𝐼
• Thus, 𝑥𝑡 ∼ 𝒩 𝑥0, 𝑡 ⋅ 𝐼

David I. Inouye, Purdue University
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Model: The forward process can be collapsed into 
a single step, i.e., 𝑞 𝑥𝑡 𝑥0  is known in closed-form

• What does this mean intuitively?
𝑞 𝑥𝑡 𝑥0 = 𝒩 𝑥𝑡; 𝜇 = 𝑥0, Σ = 𝑇 ⋅ 𝐼 ⇔ 𝑥𝑡 ∼ 𝒩 𝑥0, 𝑇 ⋅ 𝐼

David I. Inouye, Purdue University
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Model: The reverse transition conditioned on 
𝑥0 is known in closed form (𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ) 
• The ideal reverse transition 𝑝∗ 𝑥𝑡−1 𝑥𝑡  would be the posterior of  𝑞

𝑝∗ 𝑥𝑡−1 𝑥𝑡 = 𝑞 𝑥𝑡−1 𝑥𝑡 =
𝑞 𝑥𝑡 𝑥𝑡−1 𝑞 𝑥𝑡−1

𝑞 𝑥𝑡
• However, this is intractable  

• However, if  conditioned on 𝑥0, the posterior is tractable
• 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

• =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞 𝑥𝑡−1|𝑥0

𝑞 𝑥𝑡 𝑥0

• =
𝑞 𝑥𝑡 𝑥𝑡−1 𝑞 𝑥𝑡−1|𝑥0

𝑞 𝑥𝑡 𝑥0
  (Markov property of  𝑞, i.e., 𝑥𝑡 only dependent on 𝑥𝑡−1)

• =
𝒩 𝑥𝑡;𝜇=𝑥𝑡−1,Σ=𝐼 𝒩 𝑥𝑡−1;𝜇=𝑥0,Σ= 𝑡−1 ⋅𝐼

𝒩 𝑥𝑡;𝜇=𝑥0,Σ=𝑡⋅𝐼

• = 𝒩 𝑥𝑡−1; 𝜇 = 1 −
1

𝑡
𝑥𝑡 +

1

𝑡
𝑥0, Σ = 1 −

1

𝑡
𝐼

David I. Inouye, Purdue University
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Derivation uses the fact each can be expressed as the exponential of  a quadratic function, i.e., a Gaussian. These quadratic functions can be 
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Model: The reverse transition conditioned on 
𝑥0 is known in closed form (𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 ) 

• What does this mean intuitively?

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇 = 1 −
1

𝑡
𝑥𝑡 +

1

𝑡
𝑥0, Σ = 1 −

1

𝑡
𝐼

David I. Inouye, Purdue University
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Suppose 𝑡 = 4
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Σ 𝑥𝑡, 𝑥0

Notice that we defined the forward direction 𝑞 𝑥𝑡 𝑥𝑡−1

but derived the conditional inverse 𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)



Model: The reverse process approximates the 
posterior transition of  𝑞
• Prior distribution 𝑝 𝑥𝑇

• Theory: As 𝑇 → ∞, 𝑞 𝑥𝑇 → 𝒩 𝑥𝑇; 𝜇 = 𝜇𝑑𝑎𝑡𝑎 , Σ = Σ𝑑𝑎𝑡𝑎 + 𝑇 ⋅ 𝐼 .

• Therefore, we choose a Gaussian prior distribution
(note that this is with our simplified 𝑤𝜇 𝑡  and 𝑤𝜎 𝑡  and is only approximate if  𝑇 is finite)

𝑝 𝑥𝑇 ≝ 𝒩 𝑥𝑇; 𝜇 = 𝜇𝑑𝑎𝑡𝑎 , Σ = Σ𝑑𝑎𝑡𝑎 + 𝑇 ⋅ 𝐼  ≈ 𝑞 𝑥𝑇

• Reverse transition distribution 𝑝𝜃 𝑥𝑡−1 𝑥𝑡

• Theory: As the number of  timesteps approaches infinity, i.e., 𝑇 → ∞, then 
𝑞 𝑥𝑡−1 𝑥𝑡  is known to be Gaussian.

• Therefore, we choose the approximate posterior to be Gaussian 
(note with finite timesteps the posterior is not Gaussian)

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ≝ 𝒩 𝑥𝑡−1; 𝜇 = 𝜇𝜃 𝑥𝑡 , 𝐼  ≈ 𝑞 𝑥𝑡−1 𝑥𝑡

David I. Inouye, Purdue University

10



Training(1): Reweighted ELBO simplifies to 
predicting noise from noisy input at each time 𝑡
• The main idea is to simply optimize the negative ELBO of  this VAE

min
𝜃

𝔼𝑞(𝑥0) −ELBO 𝑥0; 𝑝𝜃, 𝑞

• This objective can be simplified to reconstruction error across time

min
𝜃

𝔼𝑡∈{1,…,𝑇},𝑥0,𝜖𝑡

1

2𝑡2 𝑥0 − 𝜇𝜃 𝑥0 + ǁ𝜖𝑡 , 𝑡 2
2

• The 
1

2𝑡2 term is from the ELBO derivation, where 𝜇𝜃 is like the decoder and tries to predict the clean 𝑥0

• The model usually predicts the noise instead of  the clean image
• First we rewrite the decoder as the noisy input minus predicted noise: 𝜇𝜃 𝑥𝑡, 𝑡 = 𝑥𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡
• Then, we can rewrite the objective: 𝑥0 − 𝜇𝜃 𝑥𝑡, 𝑡 2

• = 𝑥0 − 𝑥𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡
2

= 𝑥0 − 𝑥0 + ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡, 𝑡
2

= ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡, 𝑡 2

• Thus, this objective can be simplified to (full derivation in last slides)
min

𝜃
𝔼𝑡∈{1,…,𝑇},𝑥0,𝜖𝑡

ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡 , 𝑡 2
2

• Where a scaling of  
1

2𝑡2 from the ELBO is dropped for each term

David I. Inouye, Purdue University
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Training(2): Multiple VAEs with fixed encoder 
and shared parameters

min
𝜃

𝔼𝑡∈{1,…,𝑇},𝑥0,𝜖𝑡
ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡 , 𝑡 2

2

• Let 𝑧 ≡  𝑥𝑡 and 𝑥 ≡ 𝑥0, now let’s define VAE for each 𝑡
• Encoders based on 𝑡: 𝑞𝑡 𝑧 𝑥 = 𝒩 𝑥, 𝑡𝐼

• Decoders based on 𝑡: 𝑝𝜃𝑡
𝑥 𝑧 = 𝒩 𝑧 − 𝑡𝜖𝜃𝑡

𝑧 , 𝑡𝐼  
(prior 𝑝 𝑧  is irrelevant for training)

• For any 𝑡, the VAE objective would be:

• min
𝜃𝑡

𝔼𝑥,𝜖
1

𝑡2 𝑥 − 𝑥 + 𝑡𝜖 − 𝑡𝜖𝜃𝑡
𝑥 + 𝑡𝜖

2

2
≡ min

𝜃𝑡
𝔼𝑥,𝜖 𝜖 − 𝜖𝜃𝑡

𝑥 + 𝑡𝜖
2

2

• These could all be run in parallel
•

1

𝑛
σ𝑡 min

𝜃𝑡

𝔼𝑥,𝜖 𝜖 − 𝜖𝜃𝑡
𝑥 + 𝑡𝜖

2

2
= min

𝜃1…𝜃𝑇

𝔼𝑡∈ 1,…,𝑇 ,𝑥,𝜖 𝜖 − 𝜖𝜃𝑡
𝑥 + 𝑡𝜖

2

2

• If  parameters 𝜃 are shared, i.e., 𝜖𝜃𝑡
𝑧 ≡ 𝜖𝜃 𝑧, 𝑡 , the objectives are equivalent!

David I. Inouye, Purdue University
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Training(3): Multiple denoising AEs

min
𝜃

𝔼𝑡∈{1,…,𝑇},𝑥0,𝜖𝑡
ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡, 𝑡 2

2

• Identity encoders 𝑓𝑡 𝑥 = 𝑥

• Decoders: 𝑔𝑡 𝑧 = 𝑧 − 𝑡𝜖𝜃𝑡
𝑧

• Noise added to input: 𝑛𝑡 𝑥 = 𝑥 + 𝑡𝜖

• For any 𝑡, the denoising AE objective with MSE would be:

• min
𝜃𝑡

𝔼𝑥,𝜖 𝑥 − 𝑔𝑡 𝑓𝑡 𝑥 + 𝑡𝜖
2

2

• ≡ min
𝜃𝑡

𝔼𝑥,𝜖 𝑥 − (𝑥 + 𝑡𝜖 − 𝑡𝜖𝜃 𝑥 + 𝑡𝜖 2
2

• ≡ min
𝜃𝑡

𝔼𝑥,𝜖 𝑡2 𝜖 − 𝜖𝜃 𝑥 + 𝑡𝜖 2
2

• Again, global objective equivalent if
• Parameters 𝜃 are shared, i.e., 𝜖𝜃𝑡

𝑧 ≡ 𝜖𝜃 𝑧, 𝑡

• All objectives combined where the 𝑡-th objective has a weight of  
1

𝑡2

David I. Inouye, Purdue University
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Sampling(1): DDPM sampling simply samples 
the generative model sequentially

• Remember: 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = 𝒩 𝑥𝑡−1 𝜇 = 𝑥𝑡 −
1

𝑡
𝜖𝜃 𝑥𝑡 , 𝑡 , 𝐼

• Sample from prior distribution 𝑥𝑇 ∼ 𝑝 𝑥𝑇

• For 𝑡 = 𝑇, … , 1 do:

• 𝑧 ∼ 𝒩 0, 𝐼

• 𝑥𝑡−1 = 𝑥𝑡 −
1

𝑡
𝜖𝜃 𝑥𝑡 , 𝑡 + 𝑧

• For the last step, we may also quantize using rounding to get integer 
value for pixels

David I. Inouye, Purdue University
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Sampling(2): DDIM redefines 𝑝𝜃 𝑥𝑡−1 𝑥𝑡  in terms 
of  𝑞𝜎 𝑥𝑡−1 𝑥𝑡 , 𝑥0  where 𝑥0 is approximated

• Note that we can approximate 𝑥0 using 𝜖𝜃 𝑥𝑡 , 𝑡
• 𝑥0 ≈ ො𝑥0 ≝ 𝑓𝜃 𝑥𝑡 , 𝑡 = 𝑥𝑡 − 𝑡𝜖𝜃 𝑥𝑡 , 𝑡

• The generative model 𝑝𝜃  can now be defined using 𝑞𝜎

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ≝ ൝
𝒩 𝑓 𝑥1, 1 , 𝜎1

2𝐼 , if 𝑡 = 1

𝑞𝜎 𝑥𝑡−1 𝑥𝑡 , 𝑓𝜃 𝑥𝑡 , 𝑡 , otherwise

• A special case of  DDIM allows for deterministic sampling
• Stochastic training but deterministic sampling (i.e., non-stochastic)

• DDIM also allows different timesteps in sampling compared to 
training—thus enabling faster sampling with the same model 𝜖𝜃 𝑥𝑡 , 𝑡

• We can use a pretrained version of  𝜖𝜃 and just sample differently

David I. Inouye, Purdue University
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Resources

• Excellent diffusion models blog post

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 

• Excellent score-based generative models blog post

• https://yang-song.net/blog/2021/score/ (in particular, notice section 
Connection to diffusion models and others)

• Score-based comprehensive literature
• https://scorebasedgenerativemodeling.github.io/ 

David I. Inouye, Purdue University

16

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/
https://scorebasedgenerativemodeling.github.io/


A few important diffusion model works

• Diffusion Models: Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium 
Thermodynamics.” ICML 2015.
• Sohl-Dickstein et al. [2015] introduced the learning of  diffusion models as forward noising and 

reverse denoising process

• Denoising Diffusion Probabilistic Models (DDPM): Jonathan Ho et al. “Denoising diffusion 
probabilistic models.” NeurIPS 2020.
• Ho et al. [2020] made several key design decisions and connected to Noise-Conditioned Score 

Networks (NSCN) [Yang & Ermon, 2019]

• DDPM++: Alexander Nichol & Dhariwal. “Improved Denoising Diffusion Probabilistic Models.” 
ICML 2021.
• Makes several engineering improvements over DDPM including faster sampling and better 

likelihood

• Denoising Diffusion Implicit Model (DDIM): Jiaming Song et al. “Denoising diffusion implicit 
models.” ICLR 2021.
• Song et al. [2020] proposed a non-Markovian sampling procedure that includes a deterministic 

variant (note: the training is the same as DDPM)

David I. Inouye, Purdue University
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Related score-based modeling key papers

• Noise-Conditioned Score Networks (NCSN): Yang Song et al. “Generative 
Modeling by Estimating Gradients of  the Data Distribution.” NeurIPS 2019.
• Trains many score functions (i.e., ∇𝑥 log 𝑝𝑡 𝑥 ) at multiple noise levels 𝑡 and uses 

Langevin sampling for generation

• Yang Song et al. “Score-Based Generative Modeling through Stochastic 
Differential Equations.” ICLR 2021. 
• Unifies diffusion and score-based methods under common framework

• Generalizes DDPM and NCSN to continuous time

• Can convert stochastic diffusion model to continuous normalizing flow

• Tero Karras et al. “Elucidating the Design Space of  Diffusion-Based 
Generative Models.” NeurIPS 2022.
• Unifies the key practical/engineering design decisions for diffusion models

David I. Inouye, Purdue University
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Key Derivations
(time permitting)

David I. Inouye, Purdue University
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Training(1): Minimizing joint negative ELBO 
across all timesteps

• Remember the negative evidence lower bound (ELBO) from VAEs

−ELBO 𝑥; 𝑝𝑔, 𝑞𝑓 = 𝔼𝑞𝑓
− log

𝑝𝑔 𝑥, 𝑧

𝑞𝑓 𝑧 𝑥 
= 𝔼𝑞𝑓

− log 𝑝𝑔 𝑥 𝑧 + KL 𝑞𝑓 𝑧 𝑥 , 𝑝𝑔 𝑧

• Now let 𝑥 ≡ 𝑥0 and 𝑧 ≡ 𝑥1:𝑇 in the above equation

−ELBO 𝑥0; 𝑝𝜃 , 𝑞 = 𝔼𝑞 𝑥0:𝑇
−log

𝑝𝜃 𝑥0,𝑥1:𝑇

𝑞 𝑥1:𝑇 𝑥0

• = 𝔼𝑞 − log 𝑝𝜃 𝑥0 𝑥1:𝑇 + 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇  

• = 𝔼𝑞 𝑥1|𝑥0
− log 𝑝𝜃 𝑥0 𝑥1 + 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇  

  (Markov property)

David I. Inouye, Purdue University
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Computable in closed-form for 

Gaussian distributions

Computable, see 

reconstruction error slides



Lemma: Chain rule of  KL

• Chain rule of  KL

• 𝐾𝐿 𝑞 𝑥 , 𝑝 𝑥 = σ𝑖=1
𝑑 𝔼𝑞 𝑥<𝑖

𝐾𝐿 𝑞 𝑥𝑖|𝑥<𝑖 , 𝑝 𝑥𝑖|𝑥<𝑖

• Inverted chain rule of  KL (equivalent)

• 𝐾𝐿 𝑞 𝑥 , 𝑝 𝑥 = σ𝑖=1
𝑑 𝔼𝑞 𝑥>𝑖

𝐾𝐿 𝑞 𝑥𝑖|𝑥>𝑖 , 𝑝 𝑥𝑖|𝑥>𝑖

• Derivation for two dimensions

• 𝐾𝐿 𝑞 𝑥1, 𝑥2 , 𝑝 𝑥1, 𝑥2 = 𝔼𝑞 𝑥1,𝑥2
log

𝑞 𝑥1,𝑥2

𝑝 𝑥1,𝑥2

• = 𝔼𝑞 𝑥1
𝔼𝑞 𝑥2|𝑥1

log
𝑞 𝑥1 𝑞 𝑥2|𝑥1

𝑝 𝑥1 𝑝 𝑥2|𝑥1

• = 𝔼𝑞 𝑥1
log

𝑞 𝑥1

𝑝 𝑥1
+ 𝔼𝑞 𝑥2|𝑥1

log
𝑞 𝑥2|𝑥1

𝑝 𝑥2|𝑥1

• = 𝐾𝐿 𝑞 𝑥1 , 𝑝 𝑥1 + 𝔼𝑞 𝑥1
𝐾𝐿 𝑞 𝑥2|𝑥1 , 𝑝 𝑥2|𝑥1

David I. Inouye, Purdue University
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• 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇

• = σ𝑡=1
𝑇 𝔼𝑞 𝑥>𝑡|𝑥0

𝐾𝐿 𝑞 𝑥𝑡|𝑥>𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡|𝑥>𝑡      (KL chain rule)

• = σ𝑡=2
𝑇+1 𝔼𝑞 𝑥≥𝑡 |𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥≥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥≥𝑡

• = σ𝑡=2
𝑇+1 𝔼𝑞 𝑥≥𝑡 |𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡      (Markov properties)

• = σ𝑡=2
𝑇+1 𝔼𝑞 𝑥𝑡 |𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡

• = σ𝑡=2
𝑇 𝔼𝑞 𝑥𝑡 |𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡 + 𝐾𝐿 𝑞 𝑥𝑇 𝑥0 , 𝑝 𝑥𝑇

Diffusion ELBO: Simplification using KL 
chain rule and Markov property

David I. Inouye, Purdue University
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For notational simplicity, let 𝑥𝑇+1 be a dummy random variable that is 

independent of  all other random variables (the distribution does not matter).

Proof  of  Markov property for 𝑞 and an alternative derivation that is usually used are provided at the end.



Diffusion ELBO: A reconstruction term and 
many KL terms

• −ELBO 𝑥0; 𝑝𝜃 , 𝑞

• = 𝔼𝑞 −log 𝑝𝜃 𝑥0 𝑥1:𝑇 + 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇      

 (𝑥 ≡ 𝑥0 and 𝑧 ≡ 𝑥1:𝑇)

• = 𝔼𝑞 𝑥1|𝑥0
− log 𝑝𝜃 𝑥0 𝑥1 + 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇  

 (Markov property)

• = 𝔼𝑞 𝑥1|𝑥0
− log 𝑝𝜃 𝑥0 𝑥1       (𝐿0 Initial reconstruction term, e.g., dequantization)

• + σ𝑡=2
𝑇 𝔼𝑞 𝑥𝑡 |𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡        (𝐿1 to 𝐿𝑇−1 KL terms)

• +𝐾𝐿 𝑞 𝑥𝑇 𝑥0 , 𝑝 𝑥𝑇        (𝐿𝑇 “prior” term, constant w.r.t. 𝜃)

David I. Inouye, Purdue University
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The KL terms simplify to MSE between true 
posterior mean and predicted mean

• KL between two Gaussians

• 𝐾𝐿 𝒩1 𝜇0, 𝜎0
2𝐼 , 𝒩2 𝜇1, 𝜎1

2𝐼 =
1

2𝜎1
2 𝜇1 − 𝜇0 2

2 +
1

2

𝜎0
2

𝜎1
2 − 𝑑 + log

𝜎1
2

𝜎0
2

• 𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡

• = 𝐾𝐿 𝒩 𝜇𝑞 = 1 −
1

𝑡
𝑥𝑡 +

1

𝑡
𝑥0, Σ = 1 −

1

𝑡
𝐼 , 𝒩 𝜇𝜃 𝑥𝑡 , 𝑡 , 𝐼

• =
1

2
𝜇𝑞 − 𝜇𝜃 𝑥𝑡 , 𝑡

2

2
+ 𝐶

David I. Inouye, Purdue University
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The KL term can equivalently be written as 
predicting the noise
• We can equivalently rewrite 𝜇𝑞 in terms of  𝑥𝑡 and the noise ǁ𝜖𝑡 ∼ 𝒩 𝑥0, 𝑡𝐼

• 𝜇𝑞 = 1 −
1

𝑡
𝑥𝑡 +

1

𝑡
𝑥0 = 1 −

1

𝑡
𝑥𝑡 +

1

𝑡
𝑥𝑡 − ǁ𝜖𝑡 = 𝑥𝑡 −

1

𝑡
ǁ𝜖𝑡

• We can also re-parameterize 𝜇𝜃 𝑥𝑡 , 𝑡

• 𝜇𝜃 𝑥𝑡, 𝑡 = 𝑥𝑡 −
1

𝑡
𝜖𝜃 𝑥𝑡, 𝑡

• Now this simplifies to predicting Gaussian noise

• 𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡, 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡 =
1

2𝜎1
2 𝜇𝑞 − 𝜇𝜃 𝑥𝑡, 𝑡

2

2
+ 𝐶

• =
1

2
𝑥𝑡 −

1

𝑡
ǁ𝜖𝑡 − 𝑥𝑡 −

1

𝑡
𝜖𝜃 𝑥𝑡, 𝑡

2

2

+ 𝐶

• =
1

2
−

1

𝑡
ǁ𝜖𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡

2

2
+ 𝐶

• =
1

2𝑡2 ǁ𝜖𝑡 − 𝜖𝜃 𝑥𝑡, 𝑡 2
2 + 𝐶 ≡

1

2
𝜇𝑞 − 𝜇𝜃 𝑥𝑡, 𝑡

2

2
+ 𝐶

David I. Inouye, Purdue University
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Training(1): Reweighted ELBO simplifies to 
predicting noise from noisy input at each time 𝑡

• min
𝜃

𝔼𝑞(𝑥0) −ELBO 𝑥0; 𝑝𝜃, 𝑞

• ≡ min
𝜃

𝔼𝑞 𝑥0,𝑥1
− log 𝑝𝜃 𝑥0 𝑥1  (𝐿0 in practice is dequantization term)

• + σ𝑡=2
𝑇 𝔼𝑞 𝑥0,𝑥𝑡

𝐾𝐿 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0 , 𝑝𝜃 𝑥𝑡−1|𝑥𝑡  (𝐿1 to 𝐿𝑇−1 KL terms)

• +𝔼𝑞(𝑥0) 𝐾𝐿 𝑞 𝑥𝑇 𝑥0 , 𝑝 𝑥𝑇  (𝐿𝑇 “prior” term, constant w.r.t. 𝜃)

• ≡ min
𝜃

𝔼𝑞 𝑥1|𝑥0
− log 𝑝𝜃 𝑥0 𝑥1 + σ𝑡=2

𝑇 𝔼𝑡,𝑥0,𝜖𝑡

1
2𝑡2

𝜖𝑡 − 𝜖𝜃 𝑥0 + 𝜖𝑡, 𝑡
2

2
 

• In practice, this objective is simplified to
min

𝜃
𝔼𝑡∈{1,…,𝑇},𝑥0,𝜖𝑡

ǁ𝜖𝑡 − 𝜖𝜃 𝑥0 + ǁ𝜖𝑡 , 𝑡 2
2

• By combining an approximation of  𝐿0 with 𝐿1 etc.

• And dropping scaling of  
1

2𝑡2

David I. Inouye, Purdue University
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Sampling(2): DDIM redefines the forward process 
in terms of  𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0  instead of  𝑞 𝑥𝑡 𝑥𝑡−1

• DDIM notices that the training objective only depends on 𝑞 𝑥𝑡 𝑥0  rather 
than the joint 𝑞 𝑥1:𝑇 𝑥0
• Thus, there exist many joint distributions 𝑞 𝑥1:𝑇 𝑥0  that have the same marginals  

𝑞 𝑥𝑡 𝑥0  as DDPM

• Instead of  defining 𝑞 𝑥𝑡 𝑥𝑡−1 , DDIM defines
• 𝑞𝜎 𝑥1:𝑇 𝑥0 ≝ 𝑞𝜎 𝑥𝑇 𝑥0 ς𝑡=2

𝑇 𝑞𝜎 𝑥𝑡−1 𝑥𝑡 , 𝑥0

• 𝑞𝜎 𝑥𝑇 𝑥0 ≝ 𝒩 𝑥0, 𝑇 ⋅ 𝐼  

• 𝑞𝜎 𝑥𝑡−1 𝑥𝑡 , 𝑥0 ≝ 𝒩 𝑥𝑡−1; 𝜇 = ℎ 𝑥𝑡 , 𝑥0, 𝜎𝑡 , Σ = 𝜎𝑡𝐼   (Not sure the form for our 
simple example.)

• DDIM derives that 𝑞𝜎 𝑥𝑡 𝑥0 ≡ 𝑞 𝑥𝑡 𝑥0 , i.e., it matches the marginals of  
DDPM, for any 𝜎 = 𝜎1, 𝜎2, ⋯ , 𝜎𝑇

𝑇 

• Thus, the same training objective can be used!

David I. Inouye, Purdue University
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Extra derivations

David I. Inouye, Purdue University
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Lemma: Markov property for 𝑞 𝑥𝑡−1|𝑥≥𝑡, 𝑥0  

• 𝑞 𝑥𝑡−1|𝑥≥𝑡 , 𝑥0

• =
𝑞 𝑥≥𝑡|𝑥𝑡−1,𝑥0 𝑞 𝑥𝑡−1|𝑥0

𝑞 𝑥≥𝑡|𝑥0

• =
𝑞 𝑥≥𝑡|𝑥𝑡−1 𝑞 𝑥𝑡−1|𝑥0

𝑞 𝑥≥𝑡|𝑥0

• =
𝑞 𝑥𝑡−1|𝑥0 ς

𝑡′=𝑡
𝑇 𝑞 𝑥

𝑡′|𝑥
𝑡′−1

𝑞 𝑥𝑡|𝑥0 ς
𝑡′=𝑡+1
𝑇 𝑞 𝑥𝑡′|𝑥𝑡′−1

• =
𝑞 𝑥𝑡−1|𝑥0 𝑞 𝑥𝑡|𝑥𝑡−1 ς

𝑡′=𝑡+1
𝑇 𝑞 𝑥

𝑡′|𝑥
𝑡′−1

𝑞 𝑥𝑡|𝑥0 ς
𝑡′=𝑡+1
𝑇 𝑞 𝑥𝑡′|𝑥𝑡′−1

• =
𝑞 𝑥𝑡−1|𝑥0 𝑞 𝑥𝑡|𝑥𝑡−1,𝑥0

𝑞 𝑥𝑡|𝑥0

• = 𝑞 𝑥𝑡−1|𝑥𝑡 , 𝑥0

David I. Inouye, Purdue University
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Alternative simplification of  KL term from 
ELBO
• 𝐾𝐿 𝑞 𝑥1:𝑇 𝑥0 , 𝑝𝜃 𝑥1:𝑇 = 𝔼𝑞 𝑥1:𝑇 𝑥0

log
𝑞 𝑥1:𝑇 𝑥0

𝑝𝜃 𝑥1:𝑇

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
log

𝑞 𝑥1 𝑥0 ς𝑡=2
𝑇 𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0

𝑝 𝑥𝑇 ς𝑡=2
𝑇 𝑝𝜃 𝑥𝑡−1 𝑥𝑡

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
σ𝑡=2

𝑇 log
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡
+ log

𝑞 𝑥1 𝑥0
𝑝 𝑥𝑇

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
σ𝑡=2

𝑇 log
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡
⋅

𝑞 𝑥𝑡 𝑥0
𝑞 𝑥𝑡−1 𝑥0

+ log
𝑞 𝑥1 𝑥0

𝑝 𝑥𝑇

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
σ𝑡=2

𝑇 log
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡
+ σ𝑡=2

𝑇 log
𝑞 𝑥𝑡 𝑥0

𝑞 𝑥𝑡−1 𝑥0
+ log

𝑞 𝑥1 𝑥0
𝑝 𝑥𝑇

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
σ𝑡=2

𝑇 log
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡
+ log

𝑞 𝑥𝑇 𝑥0
𝑞 𝑥1 𝑥0

+ log
𝑞 𝑥1 𝑥0

𝑝 𝑥𝑇

• = 𝔼𝑞 𝑥1:𝑇|𝑥0
σ𝑡=2

𝑇 log
𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0

𝑝𝜃 𝑥𝑡−1 𝑥𝑡
+ log

𝑞 𝑥𝑇 𝑥0
𝑝 𝑥𝑇

• = σ𝑡=2
𝑇 𝔼𝑞 𝑥𝑡|𝑥0

𝐾𝐿 𝑞 𝑥𝑡−1 𝑥𝑡, 𝑥0 , 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 + 𝐾𝐿 𝑞 𝑥𝑇 𝑥0 , 𝑝 𝑥𝑇

David I. Inouye, Purdue University
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• σ𝑡=2
𝑇 log

𝑞 𝑥𝑡 𝑥0
𝑞 𝑥𝑡−1 𝑥0

• = −log 𝑞 𝑥1 𝑥0 + log 𝑞 𝑥2 𝑥0 − log 𝑞 𝑥2 𝑥0

+ log 𝑞 𝑥3 𝑥0 ⋯ + log 𝑞(𝑥𝑇 𝑥0
• = − log 𝑞 𝑥1 𝑥0 + log 𝑞 𝑥𝑇 𝑥0
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