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Very high-dimensional data 
is becoming ubiquitous

▸Images (1 million pixels)

▸Text (100k unique 
words)

▸Genetics (4 million SNPs)

▸Business data (12 million 
products)
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Why dimensionality reduction?
Lower computation costs

▸Suppose original dimension is 
large like d = 100000
(e.g., images, DNA 
sequencing, or text)

▸If we reduce to 𝑘 = 100 
dimensions, the training 
algorithm can be sped up by 
1000 ×
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4-5 million SNPs in human genome.
https://www.diagnosticsolutionslab.com/tests/genomicinsight
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Why dimensionality reduction?
Visualization

▸Allows 2D scatterplot visualizations even of 
high-dimensional data (2D projection of digits)
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https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html


Why dimensionality reduction?
Noise reduction via reconstruction
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Outline of Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction

2. Formal PCA problem: Min reconstruction

3. Derive PCA formulation for 1D
▸Least error 1D projection is orthogonal
▸Sum over all data points

4. Solution is based on truncated SVD

5. Alternative problem: Max variance
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Review of linear algebra 
and introduction to numpy Python library

▸See Jupyter notebook, which can be opened 
and run in Google Colab
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Math: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

▸PCA can be formalized as

min
Z,W

𝑋𝑐 − 𝑍𝑊𝑇
𝐹
2

▸where 
Xc = X − 𝟏𝑛𝜇𝑥

𝑇 ∈ ℝ𝑛×𝑑  centered input data
𝑍 ∈ ℝ𝑛×𝑘  (latent representation or “scores” )
𝑊𝑇 ∈ ℝ𝑘×𝑑  (principal components)
𝑤𝑠

𝑇𝑤𝑡 = 0, 𝑤𝑠
𝑇𝑤𝑠 = 𝑤𝑠 2

2 = 1, ∀𝑠, 𝑡 
orthogonal constraint
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Math: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

min
Z∈ℝ𝑛×𝑘,W∈ℝ𝑑×𝑘

𝑋𝑐 − 𝑍𝑊𝑇
𝐹
2  s. t.  𝑊𝑇𝑊 = 𝐼𝑘

▸Let’s stare at this equation some more ☺ 
▸Why is this dimensionality reduction?
▸What does the orthogonal constraint mean?
▸Why minimize the squared Frobenius norm?

▸ 𝑋𝑐 − 𝑍𝑊𝑇
𝐹
2 = σ𝑖=1

𝑛 𝒙𝑖
𝑇 − 𝒛𝑖

𝑇𝑊𝑇
2

2
= σ𝑖=1

𝑛 𝒙𝒊 − 𝑊𝒛𝑖 2
2

▸For analysis, let’s simplify to a single dimension 
(i.e., 𝑘 = 1)

▸σ𝑖=1
𝑛 𝒙𝒊 − 𝑧𝑖𝒘 2

2 where 𝑧𝑖 is a scalar
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What is the best projection given a fixed 
subspace (line in 1D case)?

▸If we are given 𝒘, what is the best 𝑧 (i.e. minimum 
reconstruction error) for a given 𝒙?

▸min
𝑧

𝒙 − 𝑧𝒘 2
2

▸The orthogonal projection! 
▸𝑧 = 𝒙𝑇𝒘 = 𝒙 𝒘 cos 𝜃 = 𝒙 cos 𝜃 

▸𝑧 = 𝒙 cos 𝜃 = hyp ⋅
adj

hyp
= adj

▸𝑧𝒘 is a scaled vector along the line defined by 𝒘
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?
𝑥

𝑦 = 𝑧𝒘
𝑤



Thus, we can simplify to only minimizing over 𝑊

min
𝒛,𝒘: 𝒘 2=1



𝑖=1

𝑛

𝒙𝒊 − 𝑧𝑖𝒘 2
2 = min

𝒘: 𝒘 2=1


𝑖=1

𝑛

𝒙𝒊 − 𝒙𝑖
𝑇𝒘 𝒘

2

2

▸Now we can return to the Frobenius norm:
min

𝒘: 𝒘 2=1
𝑋𝑐 − 𝒛𝒘𝑻

𝐹

2
 where 𝒛 = 𝑋𝑐𝒘

▸What is 𝒛𝒘𝑻? Have we seen something like this before?
▸This is the best low-rank approximation to 𝑋𝑐, which is 

given by the SVD! 
▸𝒘 = 𝒗1 and 𝒛 = 𝜎1𝒖1, where 𝜎1, 𝒖1, 𝒗1 are the first singular 

value, left singular vector and right singular vector respectively.
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For 𝑘 ≥ 1, the PCA solution is the top 𝑘 right 
singular vectors

▸If 𝑋𝑐 = 𝑈𝑆𝑉𝑇, then the general solution is
𝑊∗ = 𝑉1:𝑘

▸Remember: SVD is best 𝑘 dim. approximation
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Intuition: Principal component analysis finds the best 
linear projection onto a lower-dimensional space
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

2D to 1D projection: Red lines show the projection error onto 1D lines.  PCA finds the line 
that has the smallest projection error (in this example, when it aligns with the purple).

min
𝒘: 𝒘 2=1

𝑋𝑐 − 𝒛𝒘𝑻
𝐹

2
 

where 𝒛 = 𝑋𝑐𝒘

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


Minimizing reconstruction error (red lines) is 
equivalent to maximizing the variance of projection 
(spread of red points)
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Max reconstruction error
Min variance

Min reconstruction error
Max variance



Equivalent solutions: The solution to both problems 
is the top 𝑘 right singular vectors of 𝑋𝑐

▸Minimize reconstruction error
min

𝑊:𝑊𝑇𝑊=𝐼𝑘

𝑋𝑐 − 𝑋𝑐𝑊 𝑊𝑇
𝐹
2

▸Singular value decomposition (SVD) of 𝑋𝑐 = 𝑈𝑆𝑉𝑇

▸Solution: 𝑊∗ = 𝑉1:𝑘

▸Maximize variance of latent projection (equivalent solution)

max
𝑊:𝑊𝑇𝑊=𝐼𝑘

Tr 𝑊𝑇 Σ𝑊

▸where Σ ≔
1

𝑛
𝑋𝑐

𝑇𝑋𝑐  is the covariance matrix

▸𝑛 Σ = 𝑋𝑐
𝑇𝑋𝑐 = 𝑈𝑆𝑉𝑇 𝑇 𝑈𝑆𝑉𝑇 = 𝑉𝑆𝑈𝑇 𝑈𝑆𝑉𝑇 =

𝑉𝑆 𝑈𝑇𝑈 𝑆𝑉𝑇 = 𝑉𝑆2𝑉𝑇 = 𝑄Λ𝑄𝑇

▸Solution: 𝑊∗ = 𝑄1:𝑘 ≡ 𝑉1:𝑘!
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Recap: Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction

2. Formal PCA problem: Min reconstruction

3. Derive PCA formulation for 1D
▸Least error 1D projection is orthogonal
▸Sum over all data points

4. Solution is based on truncated SVD

5. Alternative viewpoint: Max variance
▸Derive equivalence 
▸Derive equivalent solutions
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Demo of PCA via sklearn (time permitting)

▸Random projections vs PCA projections

▸Visualizations of 
▸Minimum reconstruction error
▸Maximum variance
▸Explained variance based on 𝑘

▸Code examples
▸Digits
▸Eigenfaces
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Questions?
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Optional extra derivation slides
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How is PCA similar or different than the following 
maximization problem?

▸Minimize reconstruction error
min

𝑊:𝑊𝑇𝑊=𝐼𝑘

𝑋𝑐 − 𝑋𝑐𝑊 𝑊𝑇
𝐹
2

▸Alternative problem
max

𝑊:𝑊𝑇𝑊=𝐼𝑘

Tr 𝑊𝑇𝑋𝑐
𝑇𝑋𝑐𝑊

▸Tr 𝑊𝑇𝑋𝑐
𝑇𝑋𝑐𝑊 = Tr 𝑋𝑐𝑊 𝑇 𝑋𝑐𝑊

▸= Tr 𝑍𝑇𝑍

▸= σ𝑗=1
𝑘 𝒛𝑗

𝑇𝒛𝑗

▸= 𝑛 σ𝑗=1
𝑘 1

𝑛
σ𝑖=1

𝑛 𝑧𝑖,𝑗
2

▸= 𝑛 σ𝑗=1
𝑘 𝜎𝑧,𝑗

2  where 𝜎𝑧,𝑗
2  is the variance of the 𝑗-th latent dimension

▸Given this, what does the optimization problem mean?
▸Answer: This objective maximizes the sum of variances of the data 

projected onto 𝑊.
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1D derivation of min error 
equivalent to max variance

▸First step: Simplify squared distance

𝑥𝑖 − 𝑥𝑖
𝑇𝑤 𝑤

2

2

= 𝑥𝑖 − 𝑥𝑖
𝑇𝑤 𝑤

𝑇
𝑥𝑖 − 𝑥𝑖

𝑇𝑤 𝑤

= 𝑥𝑖
𝑇𝑥𝑖 − 2 𝑥𝑖

𝑇𝑤 𝑤𝑇𝑥𝑖 + 𝑥𝑖
𝑇𝑤

2
𝑤𝑇𝑤

= 𝑥𝑖
2 − 2 𝑥𝑖

𝑇𝑤
2

+ 𝑥𝑖
𝑇𝑤

2
𝑤 2

= 𝑥𝑖
2 − 𝑥𝑖

𝑇𝑤
2
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1D derivation of min error 
equivalent to max variance

▸Equivalence of optimization in 1D

▸arg min
𝑤

σ𝑖 𝑥𝑖 − 𝑥𝑖
𝑇𝑤 𝑤

2

2

▸= arg min
𝑤

σ𝑖 𝑥𝑖
2 − 𝑥𝑖

𝑇𝑤
2

= arg min
𝑤

σ𝑖 − 𝑥𝑖
𝑇𝑤

2

▸= arg max
𝑤

1

𝑛
σ𝑖 𝑥𝑖

𝑇𝑤
2

= arg max
𝑤

1

𝑛
σ𝑖 𝑧𝑖

2

▸= arg max
𝑤

 𝜎𝑧
2

David I. Inouye 21

Note 𝑧 is already centered so 
mean of squares is variance



Therefore, we can reformulate the problem as 
maximizing the variance

▸Let’s rewrite this last term

▸𝜎𝑧
2 =

1

𝑛
σ𝑖 𝑧𝑖

2 =
1

𝑛
σ𝑖 𝑥𝑖

𝑇𝑤
2

=
1

𝑛
𝑋𝑐𝑤 𝑇 𝑋𝑐𝑤 =

𝑤𝑇 1

𝑛
𝑋𝑐

𝑇𝑋𝑐 𝑤 = 𝑤𝑇 Σ𝑤

▸Thus, our problem can be formulated as:
▸ max

𝑤: 𝑤 =1
𝑤𝑇 Σ𝑤

▸The solution is the eigenvector 𝑞1 of Σ = 𝑄ΛQT 
corresponding to the largest eigenvalue 𝜆1

𝑤∗  = 𝑞1
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For 𝑘 > 1, we maximize the sum of variances for 
each latent dimension

▸More generally we can formulate this as:
▸ max

𝑊:𝑊𝑇𝑊=𝐼𝑘

σ𝑗=1
𝑘 𝜎𝑧𝑗

2

▸= max
𝑊:𝑊𝑇𝑊=𝐼𝑘

σ𝑗=1
𝑘 𝑤𝑗

𝑇 Σ𝑤𝑗

▸= max
𝑊:𝑊𝑇𝑊=𝐼𝑘

Tr 𝑊𝑇 Σ𝑊

▸= max
𝑊:𝑊𝑇𝑊=𝐼𝑘

1

𝑛
Tr 𝑊𝑇𝑋𝑐

𝑇𝑋𝑐𝑊

▸The solution is the top 𝑘 eigenvectors of Σ =
QΛ𝑄𝑇

▸𝑊∗ = 𝑄1:𝑘
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